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Abstract 

Background  In Flanders, general practitioners (GPs) were among the first ones to collect data regarding COVID-
19 cases. Intego is a GPs’ morbidity registry in primary care with data collected from the electronic medical records 
from a sample of general practices. The Intego database contain elaborate information regarding patient character-
istics, such as comorbidities. At the national level, the Belgian Public Health Institute (Sciensano) recorded all test-
confirmed COVID-19 cases, but without other patient characteristics.

Methods  Spatio and spatio-temporal analyses were used to analyse the spread of COVID-19 incidence at two levels 
of spatial aggregation: the municipality and the health sector levels. Our study goal was to compare spatio-temporal 
modelling results based on the Intego and Sciensano data, in order to see whether the Intego database is capable 
of detecting epidemiological trends similar to those in the Sciensano data. Comparable results would allow research-
ers to use these Intego data, and their wealth of patient information, to model COVID-19-related processes.

Results  The two data sources provided comparable results. Being a male decreased the odds of having COVID-19 
disease. The odds for the age categories (17,35], (35,65] and (65,110] of being a confirmed COVID-19 case were signifi-
cantly higher than the odds for the age category [0,17]. In the Intego data, having one of the following comorbidities, 
i.e., chronic kidney disease, heart and vascular disease, and diabetes, was significantly associated with being a COVID-
19 case, increasing the odds of being diagnosed with COVID-19.

Conclusion  We were able to show how an alternative data source, the Intego data, can be used in a pandemic situ-
ation. We consider our findings useful for public health officials who plan intervention strategies aimed at monitor 
and control disease outbreaks such as that of COVID-19.
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Introduction
COVID-19 is a respiratory disease caused by a highly 
infectious corona virus, SARS-CoV-2 [1, 2], which 
has quickly spread across continents. Since the initial 

outbreak of the global pandemic, governments and gov-
ernmental agencies around the world were responsible 
for the epidemiological follow-up of the COVID-19 epi-
demic. March 2020 is the date commonly referred to as 
the start of the epidemic in Belgium [3]. Given the rapid 
increase in COVID-19 cases, the Belgian government 
decided to implement a lockdown from March until 
April 2020, i. e., during the first wave of the epidemic (1 
March 2020 until 21 June 2020) [4, 5]. Later, from Octo-
ber until April 2021, a second lockdown was imposed 
during the second wave (31 August 2020 until 14 Febru-
ary 2021) [4, 5].
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It is crucial to have a reliable source of data to follow 
up the epidemic, where complex analyses such as spatio 
and spatio-temporal models can detect local outbreaks 
or local hotspots of the epidemic. In Belgium, the lead-
ing scientific institution in the epidemiology of infectious 
diseases, Sciensano is responsible for monitoring the epi-
demic evolution and assessing its consequences on the 
Belgian population health [6]. They did set up a new data-
base during the pandemic, to collect information about 
the daily COVID-19 data new cases, hospitalizations, 
ICU admitted patients and deaths [7], together with their 
age, gender, and residential postal codes. Although this 
has been a very important database, it lacks further indi-
vidual level information. Multiple comorbidities are asso-
ciated with the COVID-19 disease progression [8–10], 
while the elderly population is more susceptible to the 
COVID-19 disease [8, 11]. Comorbidities often increase 
the probability of infection and represent a risk factor for 
COVID-19 patients [8, 10, 12]. Underlying diseases, such 
as hypertension, cardio-vascular diseases, diabetes, and 
asthma, have been reported as risk factors for COVID-
19, increasing the mortality rate [9, 10, 12, 13]. Informa-
tion on the comorbidities of the patients could not be 
collected in the federal database, but this information can 
easily be collected by general practitioners (GPs), since 
they follow up their patients in time. The Intego network 
represents a GP morbidity registry, implemented in Flan-
ders, in which GPs continuously register information 
about their patients’ sociodemographic variables, diag-
noses, clinical parameters, laboratory results and medi-
cation prescriptions [14]. Other European countries like 
the United Kingdom [15, 16] or the Netherlands [17] 
implemented a similar GP registry, given it’s added value.

The objective of this paper was to validate the Intego 
database by comparing the spatio-temporal analy-
sis results with those based on the the federal COVID-
19 data. The advantage of using the Intego study is the 
availability of individual level information data, which 
includes details of the patients, like comorbidities. In our 
study, results from the national COVID-19 database are 
considered as the “gold standard” showing the real spa-
tio-temporal distribution of all COVID-19 cases in Flan-
ders. We investigated if a GP morbidity registry could 
provide similar and, thus, reliable results in a pandemic 
situation,further adding important information on the 
association between COVID-19 and comorbidity.

Methods
Data sources
In the current study two data sources on COVID-19 were 
analyzed: (i) confirmed positive COVID-19 cases based 
on the Intego database, a registration network for partici-
pating family practices in Flanders [14] and (ii) reported 

test-confirmed cases in Belgium based on data provided 
by the Belgian Public Health Institute (Sciensano). The 
study period was chosen to cover the first two COVID-
19 waves, from March 1st until November 30th 2020, 
before the start of the nationwide vaccination campaign 
in Belgium.

The Intego morbidity registration network collects data 
from GPs using the medical software program CareCon-
nect® (Corilus, Namur, Belgium). On 31 December 2019, 
there were 16,722 active GP’s and 2,209 GP’s in training 
in Belgium, with 2,65 GPs per practice in Belgium [18]. 
During the study period, the Intego program included 
data from 104 public GP practices spread throughout 
Flanders, covering patients with varying socio-demo-
graphic and socio-economic backgrounds. The Intego 
GPs registered new COVID-19 diagnoses. We estimate 
the incidence of registered patients with a confirmed 
positive COVID-19 diagnosis as the ratio between the 
number of patients that tested positive and the patient 
population. We assume that the patient population is 
actually the yearly contact group [19], which consists of 
those patients who contacted their general practitioner 
at least once from December 1st 2019 until November 
30th 2020. The Intego database includes for each patient 
the residential information (postal code), age, gender and 
presence/absence of the following comorbidities: asthma, 
chronic liver disease, chronic lung disease, chronic neu-
rological disorder, chronic kidney disease, heart and 
vascular disease, diabetes, hypertension, immunodefi-
ciency and obesity. All International Classification of Pri-
mary Care (ICPC) codes can be found in the Appendix, 
Table 4.

As a second data source, we used data from the Bel-
gian population health institute (Sciensano, https://​epist​
at.​wiv-​isp.​be/​covid/), responsible for the epidemiological 
follow-up of the COVID-19 epidemic in Belgium. They 
collect daily numbers on confirmed COVID-19 cases, 
hospitalizations and mortality. We used summary data 
on the number of cases per age group, gender and postal 
code residential information, who were diagnosed with 
COVID-19 between March 1st and November 30th 2020.

We defined the COVID-19 incidence as the proportion 
of COVID-19 positive cases divided by the population 
size. In this case, the Flanders’ population in 2019 is used 
to describe the “population at risk” per area.

The analysis was done at two different levels of areal 
aggregation: at the municipality level and at the health 
sector level. The 300 municipalities in Flanders are 
included in our analysis.

Health sectors, denoted as primary care zones (PCZs), 
create the basis for effective integrated care and services 
in a locality, each serving a community of approximately 
75 000 - 125 000 inhabitants [20]. The role of these 
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organizations include aligning the organization and pro-
vision of high-quality care and support; supporting local 
social policy; supporting profession-specific associations; 
supporting primary care professionals and the organiza-
tion of multi- and interdisciplinary collaboration; and 
cooperating on the Flemish health objectives relating to 
prevention and propose their own objectives [20]. There 
are 59 health sectors in Flanders which were included in 
our study.

Looking at the observed incidences on Fig.  1 as well 
as in the Appendix on Figs.  11 and 12, we can see that 
overall trends are similar, but the maps based on the 
national database are much smoother as compared to the 
observed incidences based on the Intego database. This 
could be expected as the Intego database contains only 
information for a fraction of the Flemish population.

Models
Disease mapping methods play an important role in 
understanding the spatial pattern of diseases and discov-
ering areas characterized by unusually high or low risk 
[21–24]. These methods are commonly used for areal 
data, usually based on administrative boundaries, which 
are discrete in nature, as counts of diseases or deaths in 
each area [23]. We developed two models: (1) a validation 
model which uses only the age, gender, and residential 
information similar to the information available from the 
federal database, and (2) a comorbidity model using addi-
tional patient level information from the Intego database.

Validation model
Let’s assume the total number of confirmed COVID-19 
cases Yitga in area i during month t with gender g in age 
group a have a binomial distribution

where the parameter niga denotes the number of people 
at risk in area i with gender g in age group a, which is 
constant during the entire time period analysed. Spatial 
and spatio-temporal models with various combinations 
of covariates and their interactions as well as different 
random effects for the spatial and temporal effects are 
used as depicted in Table  2, in Appendix. The interac-
tions between different spatial and temporal random 
effects were mainly developed by Knorr-Held [25], but a 
good overview and applications can be found in the book 

(1)Yitga ∼ Binomial(πitga, niga),

written by Blangiardo & Cameletti [23]. They include 
spatially structured and unstructured random effects, a 
temporally structured effect (see Table  2 in Appendix). 
We used model selection to find the best fitting model, 
via the WAIC (Watanabe-Akaike Information Crite-
rion, [26]) and the DIC (Deviance Information Crite-
rion, [27]). However, the best fitting models, model 15 
and 16, included the interaction of the covariates and 
the categorical time effects. The interpretation of these 
parameters did not make sense from a medical and statis-
tical point of view. Scientific rationale and expert opinion 
were used to develop the second best fitting model for 
our data (model 18).

We introduced the spatio-temporal model found to be 
the best fitting model for our study. The probability πitga 
is modelled via a logit link, as follows:

where gender denotes a binary variable taking the value 1 
when a patient is a male and 0 when a patient is a female; 
agegroup2 , agegroup3 , and agegroup4 are dummy vari-
ables which indicate whether patients belong to the age 
groups 17-35, 35-65, and +65 , respectively. The random 
effects term u = (u1,u2, ...,un) accounts for the spatially 
correlated heterogeneity (CH) and the random effects 
term v = (v1, v2, ..., vn) for the uncorrelated heterogeneity 
(UH) at the areal level. The unstructured random effect is 
defined as vi ∼ N (0, σ 2

v ) . The CH random effect is based 
on the full conditional distribution of the random effects 
ui , an intrinsic conditional autoregressive (CAR) random 
effects term, as introduced by [28], as follows:

where

and σ 2
u is a variance parameter that controls the degree 

of smoothing, with the adjacency-based weights wi,j . 
A binary indicator, is used based on sharing bounda-
ries, with wi,j = 1 if the areas i and j were adjacent and 
0 otherwise. The parameter γt represents the temporally 
structured random effect, modeled dynamically using a 
random walk of order 1, defined as:

(2)
logit(πitga) = log(πitga/(1− πitga)) =

= β0 + β1 ∗ genderi + β2 ∗ agegroup2i + β3 ∗ agegroup3i + β4 ∗ agegroup4i+

+ ui + vi + γt + δit ,

(3)ui|||uj , j �= i, σ 2
u ∼ N ui, σ

2
i ,

ui =
1

∑

j wi,j

∑

j

ujwi,j

σ 2
i =

σ 2
u

∑

j wi,j
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Fig. 1  Incidence of positive COVID-19 cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right)
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The parameter δit denotes the spatio-temporal interac-
tion between an uncorrelated heterogeneity (UH) ran-
dom effect and an unstructured time random effect. It 
represents unobserved covariates for each pixel (i, t) that 
do not have any structure in space and time [25], cap-
turing variation which cannot be explained by the main 
effects of a model.

Comorbidities’ model
The analysis for the Intego data is done at both munici-
pality and health sector level including comorbidities, 
using the model described by Eq. (2) adapted as follows:

where comorbidity denotes a binary variable taking 
the value 1 when a comorbidity is present and 0 when 
a comorbidity is not present. The interpretation of the 
other parameters remains unchanged. Each individual 
comorbidity is included in the analysis in either:

•	 a univariate analysis, in which the significance of 
every comorbidity effect is tested separately, and

•	 a multivariate analysis, in which all significant comor-
bidities are included together in the final model.

Parameter estimation
Spatial and spatio-temporal models are traditionally ana-
lyzed using Bayesian methods using Markov chain Monte 
Carlo (MCMC) simulation methods [23, 29, 30]. While 
the Bayesian approach can easily account for uncertainty 
in the estimates/predictions, can flexibly cope with com-
plex model specifications and can easily deal with miss-
ing data, its main limitation is the computational burden 
[23]. Especially for large data collections, characterized 
by high spatial and temporal resolutions, the computing 
time needed to perform Bayesian inference via MCMC 
could take from hours or even days to compute accurate 
posterior marginals. To overcome this issue, we use the 
integrated nested Laplace approximations (INLA) [31]. 
This alternative estimation method gained popularity as 
an approximation procedure via numerical integration 
for Bayesian computing.

The analysis is performed using the R-INLA package 
[31] in R [32].

(4)γt |γt−1 ∼ Normal
(

2γt−1, σ
2
)

.

(5)logit(πitgac) = β0 + β1 ∗malei + β2 ∗ agegroup2i + β3 ∗ agegroup3i + β4 ∗ agegroup4i+

+ β5 ∗ comorbidityi + ui + vi + γt + δit ,

Results
Validation of the Intego database
The municipality analysis’ results are presented in this 
section, while the health sector analysis’ results are 
shown in the Appendix section. Both analyses lead to 
similar general conclusions. Significant effects were 
found for gender and age categories, with similar trends 
found as based on the national collected database data 
(Table 1). Based on the Intego data, the odds of being a 
confirmed COVID-19 case for males are 0.94 (0.90; 0.98) 
times the odds for females, when controlling for all other 
variables. In terms of percent change, we can say that the 
odds of being a confirmed COVID-19 case for males are 
5.65% (2%; 10%) lower than the odds for females. The 
odds of being a confirmed COVID-19 case for the age 

categories (17,35], (35,65] and (65,110] are, respectively, 
106% (91%; 121%), 83% (70%; 95%) and 10% (1.8%; 19.8%) 
higher than the odds for the age category [0,17], control-
ling for all other variables in the model.

Based on the Sciensano data, the odds of being a con-
firmed COVID-19 case for males are 17.54% (17.24%; 
18.58%) lower than the odds for females. The odds for 
the age categories (17,35], (35,65] and (65,110] of being a 
confirmed COVID-19 case are 188% (187%; 196%), 135% 
(133%; 140%) and 141% (135%; 143%) higher than the 
odds for the age category [0,17], controlling for all other 
variables, which differs substantially from the results 
based on the Intego data.

Comorbidities’ results
Three comorbidities had important, i.e., “significant”, 
effects based on the univariate analysis, thus were 
included in the multivariate analysis. The odds for the 
patients diagnosed with chronic kidney disease, heart 
and vascular disease and diabetes of being a confirmed 
COVID-19 case are 30% (11%; 49%), 17% (9%; 26%) and 
20% (10%; 31%) higher than the odds of a patient without 
other comorbidities, controlling for all other variables.

The two random effects, the spatially correlated hetero-
geneity (CH) and the uncorrelated heterogeneity (UH), 
are not uniquely identifiable and only their sum is well 
identified by the data [33]. We interpret for every model 
the sum of these spatial random effects, while avoiding 
interpreting them separately. We observe a larger effect 
of the random effects components in the Intego analysis, 
as compared to the Sciensano analysis. For the Intego 
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analysis, the variations of the random effects compo-
nent were close for both analyses, with or without the 
comorbidities’ effects. The addition of the comorbidi-
ties as covariates in our model did not explain part of the 
variation.

The temporal structured effects over time, together 
with the 95% credible intervals, are plotted for Intego 
and Sciensano data, based on the two aggregation levels, 
municipality and health sector level (Fig.  5, in Appen-
dix). Two waves of the pandemic can easily be observed 
in the months of March - April, 2020 and September - 
November, 2020. A slight disagreement was observed 
for the first wave between the two data sources. While 
the results based on the Sciensano database do not cap-
ture the cluster of increased risk present in the eastern 
part of Flanders, the Intego database results reflect the 
starting point of the epidemic in Belgium. Starting from 
May until September, a constant time trend effect can 
be observed for the probability of being diagnosed with 

COVID-19. This probability tremendously increased 
during the second Belgian wave, which lasted from Sep-
tember until November 2020, with both data sources 
being in agreement. It is clear that the results do not 
reflect the same incidence for this time period. More 
heterogeneity is present on the Intego compared to 
Sciensano results. Likely, this is the case, because the 
Intego database represents a subsample of the total 
COVID-19 cases, which the Sciensano database should 
contain.

We calculated the predicted number of COVID-19 
confirmed cases in a population of 100,000 inhabitants 
for both data sources and both levels of aggregation. Fig-
ures 2, 3 and 4 show the predicted number of cases per 
municipality per month, while Figs.  6, 7, 8, 9 and 10 in 
Appendix show the predicted number of cases per health 
sector per month. To make the predictions comparable 
between the two data sources, the Flanders’ population in 
2019 is used to calculate the predicted incidence per area 

Table 1  Parameter estimates at the municipality level for the Intego and Sciensano data

Intego Sciensano

Mean 2.50% 97.50% Mean 2.50% 97.50%

Validation model

β̂0 0.0010 0.0009 0.0011 0.0007 0.0007 0.0007

β̂1 0.9453 0.9076 0.9833 0.8209 0.8142 0.8276

β̂2 2.0650 1.9175 2.2150 2.9192 2.8740 2.9645

β̂3 1.8293 1.7042 1.9567 2.3683 2.3331 2.4035

β̂4 1.1077 1.0183 1.1986 2.3939 2.3551 2.4328

v̂i 0.1078 0.0422 0.1912 0.0007 0.0002 0.0014

ûi 0.1270 0.0253 0.2581 0.0587 0.0447 0.0732

γ̂t 0.6738 0.2166 1.3050 2.5216 0.8301 4.6852

δ̂it 0.3552 0.2907 0.4243 0.2562 0.2374 0.2744

Comorbidity model

β̂0 0.0010 0.0009 0.0011

β̂1 0.9371 0.8996 0.9749

β̂2 2.0584 1.9113 2.2080

β̂3 1.7821 1.6592 1.9071

β̂4 0.9855 0.8999 1.0727

β̂5 Chronic kidney disease 1.3026 1.1156 1.4937

β̂6 Heart and vascular disease 1.1760 1.0929 1.2600

β̂7 Diabetes 1.2087 1.1065 1.3122

v̂i 0.0986 0.0323 0.1801

ûi 0.1470 0.0348 0.2975

γ̂t 0.7086 0.1761 1.4036

δ̂it 0.3574 0.2846 0.4274
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and month. Over the entire time period, it seems that 
the two data sources provide similar predicted number 
of cases per area and month, with slight differences due 
to variation. The two waves of the pandemic are present 
on these maps as well. For the first Belgian wave (March 
- April, 2020), a similar disagreement is present between 

the results of the Intego and Sciensano data analyses, as 
was seen for the temporal structured random effects. 
We note that this map of model-based predictions is 
smoother than those of the observed incidences (Figs. 1, 
11 and 12 in Appendix), a direct effect of the model-
ling procedure that captures the mean spatial trend in 
incidences.

Fig. 2  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right)
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The maps of the predicted number of COVID-19 
cases clearly show us the two pandemic waves, March-
April 2020 and September-November 2020. During the 
first wave, a cluster of increased number of cases was 
located around Limburg province, in the Eastern part of 
Flanders. This part of the country was the first one to be 

affected by the COVID-19 disease. Over the entire time 
period, the results of the two analyses for the two data-
bases are in agreement, with a small deviation during the 
first wave. This difference can be attributed to the differ-
ence in the coding system between the two databases in 
the beginning of the epidemic. From May until August, 

Fig. 3  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right)
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2020, the number of cases was decreasing over the entire 
study region, most likely as a consequence for the strict 
lockdown measures imposed by the Belgian and Flemish 
government during the first pandemic wave. In Septem-
ber, the number of cases started to increase again, reach-
ing a peak in October. Note that, likely due to a smaller 

sample size in the Intego database, we observe more vari-
ability of the maps compared to Sciensano results.

Age and gender have significant effects on the probabil-
ity to have COVID-19. Males have a slightly lower prob-
ability to get COVID-19 compared to females. The effect 
for gender is larger based on the Sciensano database. A 

Fig. 4  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right)
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larger effect based on the Sciensano database can be seen 
for the age groups as well. The sample size of Intego data 
is much smaller (9,467 patients) compared to Sciensano 
data (235,066 individuals).

Discussion
In this manuscript, a spatio-temporal model was used 
to investigate the distribution of COVID-19 cases in 
Flanders, Belgium based on two different databases. 
The Sciensano database was assumed to reflect the 
true spread of COVID-19 disease. Over the entire time 
period, the results of the two analyses for the two data-
bases were in agreement, with a small deviation during 
the first wave. This difference can be attributed to the 
difference in the coding system between the two data-
bases at the start of the Flemish epidemic. Using data 
from the Intego database, we examined if a GP morbid-
ity registry could be used in a pandemic situation and 
we investigated if specific comorbidities had an influ-
ence on the COVID-19 disease progression. Our find-
ings are in agreement with other studies, showing that 
patients with at least one of these comorbidities are 
more likely to be diagnosed with COVID-19 disease 
[8, 12, 34]. These results suggest that age, gender and 
comorbidities represent risk factors for critical patients 
with COVID-19 [8, 11].

The results of the health sector analyses presented 
in the Appendix section of our study are in agreement 
with the results at the municipality level. The health 
sector analyses’ results are important for policy mak-
ers since the COVID-19 policies are made at this level. 
Moreover, especially model-based results are use-
ful for policy-makers, and often more than maps of 
observed incidences, as model-based estimates pro-
vide insight in mean trends across the region of inter-
est, here Flanders.

Our study has a number of limitations. The amount 
of GPs included in the Intego project is relatively 
small compared to the total number of GPs in Flan-
ders. Progress is being made since every year new 
GPs are joining this database, thus more data about 
more patients are collected. Every area has a different 
number of practices and every practice has a different 
number of GPs included in the Intego project. More-
over, the number of tests performed per area varies, 
but their availability might also differ temporally, due 
to changes in the production capacity of these tests. 

For instance, during the first pandemic wave, due to 
limited capacity, only a fraction of suspected Belgian 
COVID-19 patients has been tested to confirm SARS-
CoV-2 infection [35]. Moreover, it should be noted 
that patients with a comorbidity may have been tested 
more often by their GP’s, as compared to a person 
without comorbidities. We did not correct for these 
factors in our analyses and future work should be done 
to correct for these factors.

The population at risk for the two analysis is differ-
ent. In the Sciensano database, it consists of all Flanders 
residents, while in the Intego database, it only consists of 
individuals seeking treatment of any kind within a year. 
We assume here that the patients seeking treatment are 
a random subset of the total population of Flanders, but 
that assumption may not be valid, as socioeconomically 
deprived individuals are known to adopt tendencies to 
visit GPs that are different from those of the rest of the 
population.

The most important advantage of using the Intego 
database is the ability to use a GP morbidity regis-
try for a cost-effective and timely investigation of the 
dynamics in an epidemic. Since the Intego database 
collects data on many pathogens, it can be used to 
investigate the disease risk of other epidemics, such 
as flu, gasto-enteritis, RSV infections . Thus, we can 
use a GP morbidity registry as an alternative to pre-
dict and monitor an epidemic, with the advantage of 
the availability of detailed patient information. Next to 
these advantages, the Intego database is continuously 
updated, data are added on a daily basis, and more GPs 
and practices start to use the database, effectively add-
ing more patients into it.

As part of future work, a joint analysis of both data-
bases will be investigated which may result in more pre-
cise estimates, as the simultaneous modelling of both 
diseases allows both processes to borrow information 
from each other. This can be implemented via the use of, 
e.g., correlated random-effects structures [36, 37] , which 
allow for shared stochasticity.

In conclusion, we were able to show how an alterna-
tive data source, the Intego data, can be used in a pan-
demic situation. We consider our findings useful for 
public health officials who plan intervention strategies 
aimed at bringing disease outbreaks such as the COVID-
19 outbreak under control as well as to monitor disease 
outbreaks.
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Appendix

Table 2  Model selection results based on WAIC and DIC values. Covariates effects: gender (G), age groups (A), comorbitidy (C), 
categorical time effect per month (M) and their interactions. Random effects: spatially correlated heterogeneity ( ui ), spatially uncorrelated 
heterogeneity ( vi ), temporally structured effect modeled dynamically using a random walk of order 1 ( γt1 ), temporally structured effect 
modeled dynamically using a random walk of order 2 ( γt2 ), temporally structured effect modeled dynamically using an autoregressive 
random effect ( γt3 ), unstructured temporal effect θi , spatio-temporal interaction between a spatially uncorrelated heterogeneity random 
effect and an unstructured time random effect ( δit ) and spatio-temporal interaction between a spatially uncorrelated heterogeneity 
random effect and a temporally structured effect modeled dynamically using a random walk of order 1 ( φit ). Blangiardo & Cameletti [23] 
provide explanations and applications of various spatio-temporal interactions

Model Covariate effects Random effects WAIC DIC

G A C M G*A G*C A*C G*M A*M C*M ui vi γt1 γt2 γt3 θi δit φit

1 � � � � � � 22436.06 22360.80

2 � � � � � � � 22423.97 22347.64

3 � � � � � 22966.20 22901.82

4 � � � � � 22966.23 22901.80

5 � � � � � 22966.17 22901.82

6 � � � � � � � � 21247.00 21180.36

7 � � � � � � � � � 21242.44 21176.52

8 � � � � � � � � � 21238.16 21170.81

9 � � � � � � � � � 21223.14 21155.51

10 � � � � � � � � � � � 21232.70 21163.13

11 � � � � � � � � 21200.66 21132.34

12 � � � � � � � � 20679.03 20637.31

13 � � � � � � � � 21096.19 21036.21

14 � � � � � � � � � 20647.02 20605.71

15 � � � � � � � � � � 20627.03 20589.03

16 � � � � � � � � � � � 20625.85 20586.26

17 � � � � � � � � 21234.85 21168.21

18 � � � � � � � 21235.67 21169.81

19 � � � � � � 27145.73 27344.24
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Fig. 5  The temporal structured random effect with 95% credibility intervals based on the municipality level (top) and based on the health sector level 
(bottom)
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Table 3  Parameter estimates (odds ratios) at the health sector level for the Intego and Sciensano data with and without comorbidities

Intego Sciensano

Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%

β̂0 0.0010 0.0001 0.0009 0.0011 0.0006 0.0000 0.0005 0.0006

β̂1 0.9453 0.0193 0.9076 0.9833 0.8198 0.0034 0.8131 0.8265

β̂2 2.0650 0.0759 1.9175 2.2150 2.9268 0.0231 2.8815 2.9722

β̂3 1.8293 0.0644 1.7042 1.9567 2.3598 0.0179 2.3248 2.3949

β̂4 1.1076 0.0460 1.0183 1.1986 2.3798 0.0197 2.3412 2.4184

v̂i 0.0932 0.0381 0.0315 0.1690 0.0545 0.0155 0.0315 0.16900

ûi 0.1540 0.0735 0.0427 0.3002 0.0016 0.0032 0.0427 0.3002

γ̂t 0.6978 0.3579 0.2070 1.4112 1.2672 0.6164 0.2070 1.4112

δ̂it 0.3559 0.0335 0.2918 0.4227 0.1985 0.0138 0.2918 0.4227

β̂0 0.0012 0.0001 0.0010 0.0013

β̂1 0.9356 0.0191 0.8982 0.9733

β̂2 2.0756 0.0763 1.9272 2.2265

β̂3 1.7716 0.0628 1.6494 1.8958

β̂4 0.9710 0.0433 0.8868 1.0567

β̂5 (Chronic nier-
ziekte)

1.3285 0.0981 1.1383 1.5228

β̂6 (Harten vaatz-
iekten)

1.1921 0.0431 1.1080 1.2772

β̂7 (Diabetes) 1.2153 0.0527 1.1126 1.3193

v̂i 0.1560 0.0426 0.0843 0.2425

ûi 0.0020 0.0045 0.0001 0.0069

γ̂t 0.6789 0.3376 0.1879 1.3507

δ̂it 0.3028 0.0316 0.2425 0.3657

Table 4  The International Classification of Primary Care (ICPC) 
codes per comorbidity

Comorbidity ICPC codes

Asthma R96

Chronic liver disease D97

Chronic lung disease R79, R84, R95

Chronic neurological disorder N74, N86, N87, N88

Chronic kidney disease U99

Diabetes T89, T90

Heart and vascular disease K74, K75, K76, K77, K78, K80, K82,

K83, K84, K89, K90, K91, K92

Hypertension K86, K87

Immunodeficiency B72, B73, B74, B90

Obesity T82
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Fig. 6  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right) at the health 
sector level
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Fig. 7  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right) at the health 
sector level
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Fig. 8  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right) at the health 
sector level
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Fig. 9  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right) at the health 
sector level

Fig. 10  Predicted number of corona cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right) 
at the health sector level
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Fig. 11  Incidence of positive COVID-19 cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right)
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Fig. 12  Incidence of positive COVID-19 cases in a population of 100,000 inhabitants using the Intego data (left) and the Sciensano data (right)
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