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Abstract
Background  Atrial fibrillation (AF) is highly correlated with heart failure, stroke and death. Screening increases 
AF detection and facilitates the early adoption of comprehensive intervention. Long-term wearable devices have 
become increasingly popular for AF screening in primary care. However, interpreting data obtained by long-term 
wearable ECG devices is a problem in primary care. To diagnose the disease quickly and accurately, we aimed to build 
AF episode detection model based on a nonlinear Lorenz scattergram (LS) and deep learning.

Methods  The MIT-BIH Normal Sinus Rhythm Database, MIT-BIH Arrhythmia Database and the Long-Term AF 
Database were extracted to construct the MIT-BIH Ambulatory Electrocardiograph (MIT-BIH AE) dataset. We converted 
the long-term ECG into a two-dimensional LSs. The LSs from MIT-BIH AE dataset was randomly divided into training 
and internal validation sets in a 9:1 ratio, which was used to develop and internally validated model. We built a 
MOBILE-SCREEN-AF (MS-AF) dataset from a single-lead wearable ECG device in primary care for external validation. 
Performance was quantified using a confusion matrix and standard classification metrics.

Results  During the evaluation of model performance based on the LS, the sensitivity, specificity and accuracy of 
the model in diagnosing AF were 0.992, 0.973, and 0.983 in the internal validation set respectively. In the external 
validation set, these metrics were 0.989, 0.956, and 0.967, respectively. Furthermore, when evaluating the model’s 
performance based on ECG records in the MS-AF dataset, the sensitivity, specificity and accuracy of model diagnosis 
paroxysmal AF were 1.000, 0.870 and 0.876 respectively, and 0.927, 1.000 and 0.973 for the persistent AF.

Conclusions  The model based on the nonlinear LS and deep learning has high accuracy, making it promising for AF 
screening in primary care. It has potential for generalization and practical application.
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Background
Atrial fibrillation (AF) is one of the world’s most chal-
lenging cardiovascular diseases of the 21st century and 
is strongly associated with stroke, heart failure and death 
[1, 2]. However, approximately 30% of AF patients can 
be asymptomatic or subclinical [3]. Although the rela-
tionship between AF screening and clinical outcomes is 
controversial [4]. Various devices can improve the detec-
tion of atrial fibrillation and facilitate the early adoption 
of comprehensive intervention, to reduce complica-
tions [5]. In recent years, wearable technologies for AF 
screening have been rapidly developing, with advantages 
such as home use, portability and long-term monitor-
ing [1]. There are two types of wearable ECG devices, 
one is the device that monitors the electrical activity 
of the heart, and the other is the device based on pho-
toplethysmography (PPG) [6]. However, the diagnosis of 
arrhythmias using PPG devices needs to be confirmed by 
ECG, which limits their practical application in clinical 
practice. Therefore, the devices that obtain ECG signals 
has become the focus of this study. A randomized clini-
cal trial showed that long-term wearable ECG devices 
increased AF detection in the community by 4.1% [7].

Interpreting long-term ECG data obtained by wear-
able devices is time-consuming, which restrict the rapid 
diagnosis of AF by general practitioners in primary care 
[8, 9]. In recent years, there has been a growing number 
of machine learning models that have been developed 
to enable rapid diagnosis of long-term ECG [10]. These 
models are constructed from the ECG characteristics of 
atrial and ventricular electrical activity [11–13]. Santala 
et al. showed that an automated artificial intelligence 
arrhythmia detection achieved a sensitivity of 100% and 
a specificity of 95.4% for detection of AF from 24-hour 
single-lead heart belt recordings in a clinical setting [14]. 
However, the study did not provide specific information 
about the intelligent model used, making it difficult to 
replicate and validate. Hartikainen et al. reported that 
COSEn and AFEvidence algorithms was achieved with 
sensitivity of 95.3%/96.3% and specificity of 95.5/98.2% 
for detection of AF from chest strap [15]. However, These 
models use traditional shallow machine learning algo-
rithms, which require manual feature extraction and are 
easily overfit [16]. Deep learning, including convolutional 
neural networks (CNNs) and recurrent neural networks 
(RNNs), is an emerging branch of machine learning. 
It uses an end-to-end learning mechanism to achieve 
direct output prediction without human intervention 
[17]. Several studies have found that deep learning can 
generally perform better than traditional ECG model-
ing algorithms [18–20]. A study published in The Lancet 
found that CNNs can discover ECG features that are dif-
ficult to discern by the human eye and demonstrated the 
advantages of CNNs in ECG image analysis [21].

However, the heart is essentially a nonlinear chaotic 
system, and the current research did not consider the 
nonlinear characteristics. The Lorenz scattergram (LS) is 
an ECG analysis technique based on chaos theory, which 
converts traditional linear ECG into a nonlinear two-
dimensional image. In LS, homogenous heartbeats gather 
together to form an “attractor“ [22]. The attractor shows a 
characteristic pattern and is used for arrhythmia diagno-
sis [22]. In recent years, various diagnostic models based 
on an LS have emerged that are only constructed by shal-
low machine learning algorithms [13, 23, 24]. Kisohara et 
al. [25] used CNNs and a LS to establish an AF diagnos-
tic model and found that the optimal segment window 
length for detecting AF with 32 × 32-pixel LS is 85 beats. 
However, this study only included sinus rhythm and 
persistent AF in the model training and did not include 
paroxysmal AF or other arrhythmias. The generalization 
ability of this model in the clinic weakened. Therefore, 
it is necessary to establish a deep learning-based model 
that can diagnose persistent and paroxysmal AF on long-
term ECG and validate it in primary care.

Methods
ECG dataset
This is a cross-sectional study. We extracted the MIT-
BIH Normal Sinus Rhythm Database [26], the MIT-BIH 
Arrhythmia Database [27] and the Long-Term AF Data-
base [28] from PhysioNet and constructed the MIT-BIH 
Ambulatory Electrocardiograph (MIT-BIH AE) dataset 
for training and internal validating the diagnosis model. 
The AF records were labeled as AF. Sinus rhythm and 
other arrhythmias were labeled as non-AF.

We built a MOBILE-SCREEN-AF (MS-AF) dataset, 
which came from a single-lead wearable ECG device in 
a community hospital in Chengdu, Sichuan and was used 
for external validation. This hospital is located in the 
suburbs of Chengdu. It has jurisdiction over 16 commu-
nities and serves a population of 138,700. We prospec-
tively enrolled participants. The inclusion criteria for 
this study were as follows: (i) patients with one or more 
of the following 7 high-risk factors for atrial fibrillation: 
age ≥ 65 years, hypertension, diabetes, obesity (Chinese 
standard, BMI ≥ 28  kg/m2 [29]), smoking, drinking, and 
myocardial infarction; and (ii) Voluntary participation 
and provision of health examination information. The 
exclusion criteria were as follows: (i) patients with a pace-
maker or ICD; (ii) patients with a history of severe skin 
allergy (Severe skin allergy is defined as the presence of 
one or more symptoms, including localized or systemic 
skin breakdown, loss of consciousness, decreased blood 
pressure, shortness of breath, fast and weak pulse, nau-
sea or vomiting.); and (iii) patients who were expected to 
wear the device for less than 24 h. For participants who 
provided consent, we equipped them with wearable ECG 
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devices. The device is a patch that is used with wet elec-
trodes. The device, provided by Chengdu Synwing Tech-
nology Co., Ltd. (Medical device registration number: 
20,212,070,096), is capable of continuous monitoring for 
up to 72 h. The device is showed in Appendix Fig. 1. The 
positions and diagnostic labels of R waves were first per-
formed by a computer software. ECG technician cleaned 
up single-lead ECG data. The cleanup process consists of 
three parts. Firstly, he assessed whether the actual moni-
toring time is equal to or greater than 24  h. Secondly, 
he evaluated the quality of the ECG waveforms, which 
included two steps. The first step was noise reduction 
processing of the ECG, based on the high-pass filtering, 
low-pass filtering and band-stop filtering techniques. The 
second step was to assess whether there are still uniden-
tifiable ECG segments in the denoised ECG. An uniden-
tifiable ECG segment is defined as a segment in which 
the precise location of the R wave cannot be accurately 
determined. If the proportion of unidentifiable ECG seg-
ments exceeds 10% of the actual monitoring time, the 
record was marked as low quality and was excluded. 
Third, he evaluated whether the computer software cor-
rectly labeled the R-wave location and diagnostic label 
(AF or non-AF). And corrected any erroneous labels. 
Subsequently, a cardiologist and electrocardiologist from 
a tertiary hospital independently reviewed the diagnostic 
marks of R waves, and inconsistencies were determined 
after discussion. The AF records were labeled as AF. 
Sinus rhythm and other arrhythmias were labeled as non-
AF. This study was approved by the Ethics Committee of 
West China Hospital of Sichuan University (2018 − 454).

Lorenz Scattergram
The LS was constructed from ECG segments by deter-
mining a point (RRn, RRn + 1) in the two-dimensional 
coordinate system (RRn, RRn + 1 is the adjacent RR 
interval on the ECG). The RR interval was iterated suc-
cessively to form an LS [22]. The LS preparation process 
was as follows: (1) The ECG recording R-wave position 
and diagnostic markers were converted into a text file 

with the suffix.rri3. (2) The text files containing R-wave 
positions and diagnostic markers were converted into 
TFRecord data streams. TFRecord is a binary file pro-
vided by TensorFlow to store data, which is convenient 
for copying, moving or cutting data without requiring 
another marker file. (3) The TFRecord data stream was 
continuously cut into units of 85 R waves to obtain data 
segments. (4) The TFRecord data segments were con-
verted into an LS with a resolution of 32 × 32. (5) The LS 
was considered to be AF if the R waves of 30 consecutive 
seconds or more were marked as AF in the 85 R waves; 
otherwise, it was non-AF. Figure 1 shows an LS of AF and 
non AF (sinus rhythm) with 85 R waves.

We converted the ECG into a two-dimensional LS 
according to the aforementioned procedure. Data aug-
mentation was used to expand the sample size for the 
MIT-BIH AE dataset. We used 85 R waves as the window 
width and 9 R waves as the step length and continuously 
cut the TFRecord data stream. LSs from the MIT-BIH AE 
dataset were randomly divided into training and valida-
tion sets in a 9:1 ratio. Data augmentation was not used 
in the MS-AF dataset, and LSs from the MS-AF dataset 
constituted the external validation set.

Deep learning model
The CNN in this study comprised an input layer, con-
volutional layer, pooling layer, fully connected layer and 
output layer. The detailed process of model develop-
ment was shown in the supplementary information. And 
the structure of the CNN in this study was described in 
Appendix Table  1. During the training and validation 
phases, we noticed no significant improvement in accu-
racy and loss value after 20 epochs. We used 20 epochs to 
train the model. The accuracy and loss function value of 
the diagnostic model of each epoch in CNN training and 
validation were shown in Appendix Fig. 2 and Appendix 
Fig. 3. We further visually analyzed the convolution ker-
nel of the three convolution layers. The image features of 
the convolution kernel of the convolutional layers of the 

Fig. 1  Lorenz scattergram with 85 R waves. A LS of AF. B LS of non AF (sinus rhythm)
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model were shown in Appendix Fig.  4, Appendix Fig.  5 
and Appendix Fig. 6.

Evaluation metrics
We selected sensitivity (Sen), specificity (Spe), accuracy 
(Acc), positive predictive value (PPV), negative predic-
tive value (NPV), positive likelihood ratio (+ LR), negative 
likelihood ratio (-LR), receiver operating characteristic 
curve (ROC) and area under the curve (AUC) to evaluate 
model diagnostic performance [30, 31].

The performance evaluation of the model was divided 
into two levels. In the first level, based on the LS with 85 
R waves, the predicted classification of the model was 
compared with the real classification of the LS to evalu-
ate the model performance. The second level was based 
on long-range ECG records. Each ECG record generated 
several LSs with 85 R waves through sequential data cut-
ting. The model predicted the diagnosis of ECG records 
according to the LS prediction results. The prediction 
results of the ECG record of the model were compared 
with the real diagnosis results of the ECG records to eval-
uate the model performance.

Statistical analysis
Data were analyzed by SPSS 26.0. If the measurement 
data met the normal distribution, they were described 
by the mean±standard deviation. We used the median 
and quartile if the normal distribution was not satis-
fied. Enumeration data were described by frequency 
and percentage. The computer configuration was as fol-
lows: MacBook Air (2017), 1.8 GHz dual-core Intel Core 

i5 processor, 8 GB 1600  MHz DDR3 memory and an 
Intel HD Graphics 6000 1536  MB graphics card. GPU: 
NVIDIA TESLA P100. We used Python (version 3.8.8) 
for programming. The Keras software package was used 
for constructing and optimizing the CNN, sklearn.met-
rics was used to create confusion matrices, the roc_curve 
function was used to create ROC and calculate the AUC. 
The optimal threshold of the model was determined by 
the maximum Youdan index. The np.argmax function 
was used to find the maximum Youdan index and to 
determine the ROC cutoff value.

Results
Baseline characteristics of datasets
The MIT-BIH Normal Sinus Rhythm Database includes 
18 ECG records. The MIT-BIH Arrhythmia Database 
includes 48 ECG records, and the Long-Term AF Data-
base includes 84 ECG records. In the MS-AF dataset, 
a total of 138 patients used single-lead wearable ECG 
devices between September 8 and December 31, 2021. 
Twenty-five patients were excluded, 8 patients did 
not have complete health information, 3 patients had 
an actual measurement time of less than 24  h, and 14 
patients (10.77%) had poor-quality ECG data. Finally, 113 
patients were included in the analysis. The characteristics 
of the ECG datasets are summarized in Table 1.

Characteristics of the lorenz scattergram
A total of 1,345,849 LSs were obtained from the MIT-BIH 
AE dataset. The training set comprised 1,211,264 LSs, 
and the internal validation set comprised 134,585 LSs. 

Table 1  Baseline characteristics of the ECG datasets
Variable MIT-BIH AE dataset MS-AF 

dataset(n = 113)MIT-BIH Normal 
Sinus Rhythm Data-
base (n = 18)

MIT-BIH Arrhythmia 
Database (n = 48)

Long-Term AF Data-
base (n = 84)

Sex, n (%)
  Male 5 (27.78) 26 (54.17) - 55 (48.67)
  Female 13 (72.22) 22 (45.83) - 58 (51.33)
Age, (Mean ± SD)/M(IQR), years 34.33 ± 8.44 67.00(53.75,76.25) - 71.0(65.00,77.00)
Duration of ECG Record, (Mean ± SD)/M(IQR), h 24.31 ± 0.86 0.50 ± 0.00 24.00(23.78,24.58) 25.08 (23.00)
Sinus Rhythm, n (%) 18(100.00) 44(91.67) 53(63.10) 72 (63.72)
Atrial Fibrillation, n (%)
  Paroxysmal Atrial Fibrillation 0(0.00) 5(10.42) 52(61.90) 5 (4.42)
  Persistent Atrial Fibrillation 0(0.00) 3(6.25) 31(36.90) 41 (36.23)
Other Arrhythmias, n (%)
  Pacemaker Rhythm - 3 (6.25) - 0(0.00)
  Supraventricular Premature Beats 15(83.33) 27(56.25) 46(54.76) 72 (63.72)
 	  Supraventricular Tachycardia - 7(14.58) 45(53.57) 45 (39.82)
  Paroxysmal Atrial Flutter - 2 (4.17) - 2 (1.77)
  Premature Ventricular Contractions 5(27.78) 37(77.08) 24(28.57) 91 (81.42)
  Ventricular Tachycardia - 13(27.08) 34(40.48) 9 (7.96)
  Ventricular Flutter - 1(2.08) - 0 (0.00)
- indicates that PhysioNet did not provide the data



Page 5 of 9Yao et al. BMC Primary Care          (2024) 25:267 

In the training set, there were 575,820 cases (47.54%) of 
AF and 635,444 cases (52.46%) of non-AF. In the internal 
validation set, 66,949 cases (49.74%) of LSs were AF, and 
67,636 cases (50.26%) were non-AF. A total of 207,540 
LSs were transformed from the MS-AF dataset to form 
the external validation set. There were 67,263 cases 
(32.41%) of AF and 140,277 cases (67.59%) of non-AF.

The cutoff value of the model
The first cutoff value of the model was to distinguish 
whether the LS was AF or not. The ROC curves of the 
model for diagnosing AF in all LSs from the training and 
internal validation sets were shown in Fig. 2(A). The cut-
off value of the model for diagnosing whether LS was AF 
or non-AF was 0.610. A probability value ≥ 0.610 pre-
dicted AF, and < 0.610 predicted non-AF. The second 
cutoff value was to distinguish whether a single-lead ECG 
record was AF or not. The ROC curves of the model for 
diagnosing AF in the MIT-BIH AE dataset were shown 
in Fig. 2(B). The cutoff value of the model for diagnosing 
whether the ECG record was AF was 0.007. A probabil-
ity value ≥ 0.007 predicted AF, and < 0.007 predicted non-
AF. The third cutoff value was to distinguish whether a 

single-lead ECG recording is persistent AF or paroxysmal 
AF. The ROC of the model for diagnosing paroxysmal 
AF in the MIT-BIH AE dataset of AF records is shown 
in Fig. 2(C). The cutoff value of the model for diagnosing 
whether the ECG record was paroxysmal AF or persis-
tent AF was 0.948, 0.007 ≤ probability value < 0.948 pre-
dicts paroxysmal AF, and ≥ 0.948 predicts persistent AF.

Performance evaluation in the lorenz scattergram
The confusion matrix for diagnostic model in the inter-
nal and external validation sets was shown in Table 2. In 
the internal validation set, the sensitivity of the model for 
diagnosing AF was 0.992, the specificity was 0.973, and 
the accuracy was 0.983. In the external validation set, the 
sensitivity of the model for diagnosing AF was 0.989, the 
specificity was 0.956, and the accuracy was 0.967. Table 3 
showed the performance of the model in the internal and 
external validation sets. The ROC curves of the model for 
diagnosing AF in the internal and external validation sets 
were shown in Fig. 3.

Performance evaluation in ECG records
In the 113 ECG records from the MS-AF dataset. The 
sensitivity of the model diagnosis of paroxysmal AF was 
1.000, the specificity was 0.870, and the accuracy was 
0.876. The sensitivity of the model diagnosis of persistent 
AF was 0.927, the specificity was 1.000, and the accuracy 
was 0.973. Table 4 shows the performance of the model 
in ECG records of the MS-AF dataset.

Table 2  The confusion matrix for the model in the internal and 
external validation sets

Ture label

Internal validation 
set

External validation 
set

AF non-AF AF non-AF
Predicted label AF 66,509 1,791 66,492 6,128

non-AF 514 65,771 771 134,099
AF: Atrial fibrillation, non-AF: nonatrial fibrillation

Table 3  Performance of the model in the internal and external validation sets
Sen Spe Acc PPV NPV +LR -LR AUC

Internal validation set 0.992 0.973 0.983 0.974 0.992 37.434 0.008 0.995
External validation set 0.989 0.956 0.967 0.916 0.994 22.621 0.012 0.987
Sen: sensitivity, Spe: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative predictive value, +LR: positive likelihood ratio, -LR: negative likelihood 
ratio, AUC: area under the curve

Fig. 2  Receiver operating characteristic curves. A ROC of the diagnostic model in all LSs from the training and internal validation set. B ROC of the diag-
nostic model in the MIT-BIH AE dataset of ECG records. C ROC curves of the diagnostic model in the MIT-BIH AE dataset of AF records
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Discussion
In this study, we developed a deep learning model for 
detecting AF episodes based on nonlinear LS. The pro-
posed model was external validated in a clinical ECG 
dataset. We found that the sensitivity, specificity and 
accuracy of the model in diagnosing paroxysmal AF were 
100.0%, 87.0% and 87.6%, respectively, in long-term ECG 
records. The sensitivity, specificity and accuracy were 
92.7%, 100.0% and 97.3%, respectively, for diagnosing 
persistent AF in long-term ECG records.

In recent years, various machine learning algorithms 
have emerged for diagnosing AF, including shallow 
machine learning algorithms and deep learning algo-
rithms [32]. Shallow machine learning algorithms need to 
manually extract features, which are prone to overfitting. 
Deep learning algorithms automatically extract features 
based on raw data, which is conducive to recognizing 
of high-dimensional features [32]. Deep learning algo-
rithms include CNN, long short-term memory(LSTM) 
and hybrid deep models(CNN-LSTM) [16]. Xia et al. [33] 
first proposed a CNN model for diagnosing AF, convert-
ing the 5-second ECG segment into a two-dimensional 
matrix by short-term Fourier transform and station-
ary wavelet transform and inputting a two-dimensional 
matrix into CNN to build a model. The model’s sensitivity 
and specificity for diagnosing AF were 98.34/98.79% and 
97.87/98.24%, respectively, in the MIT-BIH AF database. 
However, this model was not validated in a clinic, and 
nonlinear ECG characteristics were not considered [34, 
35]. Mittal et al. used a 2-part(a QRS complex detector 
and an AF detector) deep neural network filter to identify 

AF episodes in ECG data from implantable loop recorder 
[36]. This study demonstrated deep neural network can 
filter up to 66% of all false-positive AF events, and reduce 
the burden on clinicians. However, the model was fed 
with PDF reports (low resolution) instead of ECG signals, 
which affected the performance of the model. Another 
study used LSTM [37] to diagnose AF and achieved a 
sensitivity and specificity of 99.8% and 99.6% in MIT-BIH 
Atrial Fibrillation Database. Andersen et al. [19] used a 
CNN-LSTM for AF diagnosis, which achieved a sensitiv-
ity and specificity of 98.98% and 96.95%, respectively in 
Physionet dataset (MIT-BIH AF Database, the MIT-BIH 
Arrhythmia Database and the MIT-BIH NSR Database). 
The diagnostic performance of the LSTM and CNN-
LSTM models is similar to that of the CNN model, but 
model training has a heavy calculation burden and high 
time consumption. In our study, we used a CNN to build 
the model, which has a simple structure, short training 
time, simple GPU configuration, good performance in 
primary care.

The common AF diagnosis model was mainly con-
structed according to the characteristics of atrial fibril-
lation f waves and irregular RR intervals [11, 38–40]. 
Nuryani et al. [11] extracted the number of P/f-wave 
peaks and the P/f-wave width and used the fuzzy infer-
ence system to construct a diagnostic model. The sensi-
tivity, specificity, and accuracy of diagnosing AF were 
77.89%, 60.40%, and 75.90%, respectively in MIT-BIH 
arrhythmia dataset. The diagnostic performance was low 
because the low peak value of f wave is difficult to extract, 
while the clinical validation process was lacking. Logan et 

Table 4  Performance of the model in ECG records of the MS-AF dataset
Sen Spe Acc PPV NPV +LR -LR

Non-AF 0.836 1.000 0.903 1.000 0.807 NA 0.171
Paroxysmal AF 1.000 0.870 0.876 0.263 1.000 7.692 0.000
Persistent AF 0.927 1.000 0.973 1.000 0.960 NA 0.091
Non-AF: non atrial fibrillation, Sen: sensitivity, Spe: specificity, Acc: accuracy, PPV: positive predictive value, NPV: negative predictive value, +LR: positive likelihood 
ratio, -LR: negative likelihood ratio, AUC: area under the curve, NA: Not applicable

Fig. 3  Receiver operating characteristic curves. A ROC of the model for diagnosing AF in the internal validation set. B ROC of the model for diagnosing 
AF in the external validation set
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al. [41] extracted the RR interval variance in the 10-sec-
ond ECG segment to build an AF detection algorithm, 
with a sensitivity of 96.0% and a specificity of 89.0% in 
the MIT-BIH AF database. This model’s performance has 
been improved, but the model was also not validated in 
the clinic. Du et al. [38] combined the three features of 
“average number of f waves in TQ interval”, “maximum 
difference of RR interval” and “standard deviation of RR 
interval” of 6-second ECG segments for AF diagnosis. 
The accuracy of classifying AF or non-AF was 93.67%, 
and the specificity was 94.13% in the multiple MIT-BIH 
databases. However, the model was only validated in the 
open source database, and there might be overfitting and 
a lack of clinical verification. Importantly, none of the 
above models consider the nonlinear characteristics of 
ECG data.

Heart rhythm is essentially a nonlinear chaotic sys-
tem. Advances in nonlinear analysis techniques of elec-
trical signal processing could lead to a better arrhythmia 
diagnosis [42]. The LS is a nonlinear analytical technique 
based on chaos theory that can fully reflect the nonlinear 
heart characteristics and transform the traditional lin-
ear electrocardiogram into a nonlinear two-dimensional 
image [22]. Based on the LS, other scattergram analy-
sis techniques have appeared in recent years. Examples 
include the RR difference scattergram [43], RdR scat-
tergram [44] and three-dimensional scattergram [45]. 
Lian et al. [46] established a diagnostic model based on 
the RdR scattergram of different RR intervals (32, 64, 
and 128 RR intervals), which yielded excellent sensitivity 
and specificity for window sizes of 32 (94.4% and 92.6%, 
respectively), 64 (95.8% and 94.3%), and 128 (95.9% and 
95.4%) in 4 PhysioNet databases(MIT-BIH AF database, 
MIT-BIH arrhythmia database, MIT-BIH normal sinus 
rhythm database, and normal sinus rhythm RR inter-
val database). However, it does not use real-world ECG 
data for verification, nor does it consider the diagnostic 
value of the model in long-range ECG recordings. Mark 
Lown et al. [13] established a AF diagnostic model based 
on the decorrelated Lorenz plot of 60 consecutive RR 
intervals and support vector machine. The sensitivity and 
specificity of the model were 100.0% and 97.6% in the 
validation data from heart rate monitor device (Polar-
H7). However, the model only considered its diagnostic 
performance in short-range ECG (60 RR intervals). Its 
diagnostic performance in long range ECG was not fur-
ther verified. On the other hand, the validation data were 
collected in a relaxed state without an interference sig-
nal. The performance of model was limited in long-term 
ECG data because of long-term ECGs with rich noise 
and baseline drift [47]. Single-lead wearable ECG devices 
lack supplementary information from other leads, and 
are more susceptible to noise and baseline drift, resulting 
in poor quality. A study indicated that wearable devices 

based on PPG signals had poor quality, resulting in an 
inability to determine diagnoses in as high as 32.2% of the 
data [48]. Another study found that approximately 20% 
of data from the heart belt ECG could not be interpreted 
because of poor quality [14]. In our study, the proportion 
of low-quality ECG data was 10.77%. This percentage is 
lower than other studies. This may be attributed to differ-
ences in the evaluation methods for data quality. Further 
research is warranted.

Our model was established based on CNN and LS 
adequately considered the nonlinear ECG data charac-
teristics and achieved good performance in long-range 
ECG in the real world. The sensitivity of the model is 
high, which makes it unlikely that AF was missed. It can 
be used for screening in community settings. In addition, 
the specificity of the model is high and false positive is 
not easy to occur. The high performance of the model 
allows for an earlier and more accurate diagnosis of AF, 
enabling timely delivery of intervention and appropriate 
treatment strategies. However, whether this model can 
actually bring benefits to the subjects needs to be further 
studied. Moreover, we can establish similar LSs based on 
the peak of the PPG signal in theory. Subsequently, the 
generated graph can be fed into existing models to diag-
nose AF. This would make the algorithm much wider 
applicable.

Limitations
There were several limitations to this study. First, our 
study used the CNN to establish a diagnosis model. 
This model is a black box that has poor interpretabil-
ity. Explainable models are more popular in general, 
which can prevent some of the poor decisions in medi-
cine that are caused by black box models [49]. Second, 
the research subject of the MS-AF dataset was collected 
from a primary care setting. However, we did not con-
tinuously include subjects due to interruptions caused by 
the COVID-19 pandemic, which caused selection bias for 
subjects. This is also the reason why the rate of AF in the 
MS-AF dataset was as high as 40.65%. Third, the num-
ber of patients with paroxysmal AF was only five patients 
in the MS-AF dataset, which is a low number and a low 
proportion of AF patients in the current study. This may 
affect the test results of the model. Fourth, limited by 
the types and number of arrhythmias in the database, 
the current model can only distinguish between non-AF, 
paroxysmal AF and persistent AF. In the classification of 
non-AF, it also includes other arrhythmias, such as atrial 
flutter. Compared to sinus rhythm, these conditions are 
associated with an increased risk of stroke or other com-
plications. Hence, the presence of non-AF does not indi-
cate that the subjects are completely free from underlying 
pathological conditions. With the accumulation of ECG 
data, we can develop machine learning diagnostic models 
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for other arrhythmias to help general practitioners to 
identify more high-risk groups. Fifth, the database in 
this study may not fully capture the diversity of primary 
care population. More diverse and representative data-
sets from primary care settings are needed to validate 
and extend our findings. And we lacked a direct com-
parison with current standard-of-care methods and other 
machine learning algorithms within the same dataset.

Conclusion
We developed a novel model for detecting AF episode 
based on a nonlinear LS and deep learning. The model 
had high accuracy and had application value in AF 
screening in primary care.
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